Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abbott, D (Ed.)Known as a bio-limiting metal, high abundances of iron in sea water can amplify biological productivity. The growth of diatoms and other photosynthetic organisms increases, providing more food for grazing organisms like foraminifera. The net result is more organic matter in surface waters and ultimately in surface sediments. Existing satellite data show increases in ocean chlorophyll in areas affected by volcanic eruptions. We infer from this that iron derived from volcanic ash does increase biological productivity. However, the relative increase in productivity is unknown. We examined 3 sediment cores from the Equatorial Western Pacific to analyze the relationship between volcanic ash and biological productivity: RC14-44, RC14-66, and RC14-67. All contain black or dark-colored foraminifera within ash layers and white-shelled foraminifera outside ash layers. We attribute the dark material outside and inside the foraminifera to organic carbon and metals. In our cores, some foraminifera are covered in iron sulfide (FeS), which could be pyrite, and contain large amounts of carbon as well as high abundances of aluminum and silicon. We examined barium concentrations to gain further knowledge of biological productivity at specific core depths as barium is a marker for primary productivity. We found that barium levels within ash layers increased at least ten-fold. Within ash layers, we also noticed that the ashes with higher amounts of fine silt and clay sized material have the greatest increase in barium content, perhaps related to explosion size. This pattern of increases in Ba, metals and organic carbon within ash layers compared to surrounding sediments shows that volcanic ash deposition increases marine productivity. For future research, measuring markers for biological productivity like biogenic silica content and loss on ignition (LOI) within and outside ash layers would further clarify the relationship between volcanic ash deposition and biological productivity.more » « less
-
Abbott, D (Ed.)Volcanic eruptions deposit Fe-bearing volcanic ash in the ocean, thereby increasing biological productivity. The increased organic matter in areas of high biological productivity uses up oxygen as this organic matter decays and sinks through the water column. Past living beings, like foraminifera, ate organic matter that was carbon-rich and sometimes had metals absorbed into their carbon, creating coatings inside and outside their shells. These coatings can tell us about how biological productivity was affected before, during, and after the volcanic eruption. The studied cores are from the northwest Pacific Ocean and are close to geologically young volcanoes that are not well understood. The two cores that we focused on were VM28-309 and VM36-15 both taken by the Vema research ship. We studied the relationship between ash deposition and biological productivity by looking at all the ash layers in both cores. We found that in most of the ash layers, there were black or dark-colored foraminifera with coatings inside and outside the shells that were often carbon-rich and sometimes metal-rich. We attribute this coating to the increase of organic matter in surface waters when there was deposition of large amounts of volcanic ash. We also found high concentrations of Barium metal in VM28-309. Barium (Ba) is a biological marker because most or all Ba originates from the organic matter contained in sediments. We found that ash layers containing the finest materials (<38 micrometers in size) had the highest Ba content. For accurate results, we must sample above and below ash layers and select more sediment cores in the area. Also, Barium corrections must be done using data on biogenic silica contents. Loss on ignition (LOI) data will give us an estimate of the total organic carbon in each sample- allowing a second direct assessment of the increase in biological productivity produced by the deposition of volcanic ash.more » « less
-
The COVID-19 pandemic has mainstreamed human mobility data into the public domain, with research focused on understanding the impact of mobility reduction policies as well as on regional COVID-19 case prediction models. Nevertheless, current research on COVID-19 case prediction tends to focus on performance improvements, masking relevant insights about when mobility data does not help, and more importantly, why, so that it can adequately inform local decision making. In this article, we carry out a systematic analysis to reveal the conditions under which human mobility data provides (or not) an enhancement over individual regional COVID-19 case prediction models that do not use mobility as a source of information. Our analysis— focused on U.S. county-based COVID-19 case prediction models—shows that (1) at most, 60% of counties improve their performance after adding mobility data; (2) the performance improvements are modest, with median correlation improvements of approximately 0.13; (3) improvements were lower for counties with higher Black, Hispanic, and other non-White populations as well as low-income and rural populations, pointing to potential bias in the mobility data negatively impacting predictive performance; and (4) different mobility datasets, predictive models, and training approaches bring about diverse performance improvements.more » « less
-
Abbott, D (Ed.)Some satellite data show an increase in ocean chlorophyll in areas affected by volcanic eruptions. These increases in ocean color are thought to reflect an increase in photosynthetic activity by phytoplankton. These increases in primary production have been attributed to iron (Fe) from volcanic ash, particularly in high-latitude regions where primary productivity is limited by low Fe (the iron fertilization hypothesis). However, photosynthesis also appears to increase in the tropical ocean, for example in the Sunda and Ryukyu arcs and the Bismarck Sea, areas usually not thought to be iron limited. To examine the effects of volcanic ejecta on productivity in other areas, we examine relationships between ash deposition and biological productivity in three cores, RC14-44 (Sunda arc), VM28-309 (Ryukyu arc) and VM33-116 (Bismarck Sea). These cores contain volcanic ash layers with black or dark-colored foraminifera, different from the bright white foraminifera found outside of the ash layers. This dark coloration results primarily from organic carbon. In RC14-44, some foraminifera are coated with FeS and also contain high amounts of internal carbon. In VM28-309 and VM33-116, some foraminifera are filled with organic carbon rich materials, or have coatings rich in carbon. Occasionally, there are local enrichments in Fe within the foraminifera, indicative of extensive redox cycling. We attribute this carbon to increased biological productivity in these intervals. Barium (Ba) concentrations, a proxy for primary productivity because most or all Ba originates from organic matter contained in the sediment, is also enriched by up to 30-fold in the sediments containing ash. The ash layers with the highest amounts of fine material exhibit the largest enrichments in Ba, suggesting ash texture may influence the resulting changes in marine productivity. Overall, we find clear evidence that ash depositions increase both primary production and carbon export to sediments. Loss on ignition (LOI) and biogenic silica contents between and within ash layers, are potentially useful to further examine both the coupling between production and carbon burial, and the influence of ash deposition on phytoplankton community structure.more » « less
-
Many causal and policy effects of interest are defined by linear functionals of high-dimensional or non-parametric regression functions. Root-n consistent and asymptotically normal estimation of the object of interest requires debiasing to reduce the effects of regularization and/or model selection on the object of interest. Debiasing is typically achieved by adding a correction term to the plug-in estimator of the functional, which leads to properties such as semi-parametric efficiency, double robustness, and Neyman orthogonality. We implement an automatic debiasing procedure based on automatically learning the Riesz representation of the linear functional using Neural Nets and Random Forests. Our method only relies on black-box evaluation oracle access to the linear functional and does not require knowledge of its analytic form. We propose a multitasking Neural Net debiasing method with stochastic gradient descent minimization of a combined Riesz representer and regression loss, while sharing representation layers for the two functions. We also propose a Random Forest method which learns a locally linear representation of the Riesz function. Even though our method applies to arbitrary functionals, we experimentally find that it performs well compared to the state of art neural net based algorithm of Shi et al. (2019) for the case of the average treatment effect functional. We also evaluate our method on the problem of estimating average marginal effects with continuous treatments, using semi-synthetic data of gasoline price changes on gasoline demand. Code available at github.com/victor5as/RieszLearning.more » « less
-
Abstract We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19, during the LIGO–Virgo–KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered ∼14% of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz, where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy 1 × 10−4M⊙c2and luminosity 2.6 × 10−4M⊙c2s−1for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Abstract Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering single-harmonic and dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is 6.4 × 10−27for the young energetic pulsar J0537−6910, while the lowest constraint on the ellipticity is 8.8 × 10−9for the bright nearby millisecond pulsar J0437−4715. Additionally, for a subset of 16 targets, we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of nonstandard polarizations as predicted by the Brans–Dicke theory.more » « lessFree, publicly-accessible full text available April 10, 2026
-
Swift-BAT GUANO Follow-up of Gravitational-wave Triggers in the Third LIGO–Virgo–KAGRA Observing RunAbstract We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO–Virgo–KAGRA network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received with low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum-likelihood Non-imaging Transient Reconstruction and Temporal Search pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15–350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10−3Hz, we compute the GW–BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers.more » « lessFree, publicly-accessible full text available February 14, 2026
An official website of the United States government

Full Text Available